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The genetic legacy of continental 
scale admixture in Indian 
Austroasiatic speakers
Kai Tätte1,2, Luca Pagani2,3, Ajai K. Pathak1,2, Sulev Kõks4,5, Binh Ho Duy6, Xuan Dung Ho7, 
Gazi Nurun Nahar Sultana   8, Mohd Istiaq Sharif8, Md Asaduzzaman8, Doron M. Behar2, 
Yarin Hadid9, Richard Villems1,2, Gyaneshwer Chaubey2,11, Toomas Kivisild2,10 & 
Mait Metspalu2

Surrounded by speakers of Indo-European, Dravidian and Tibeto-Burman languages, around 11 
million Munda (a branch of Austroasiatic language family) speakers live in the densely populated and 
genetically diverse South Asia. Their genetic makeup holds components characteristic of South Asians 
as well as Southeast Asians. The admixture time between these components has been previously 
estimated on the basis of archaeology, linguistics and uniparental markers. Using genome-wide 
genotype data of 102 Munda speakers and contextual data from South and Southeast Asia, we 
retrieved admixture dates between 2000–3800 years ago for different populations of Munda. The best 
modern proxies for the source populations for the admixture with proportions 0.29/0.71 are Lao people 
from Laos and Dravidian speakers from Kerala in India. The South Asian population(s), with whom the 
incoming Southeast Asians intermixed, had a smaller proportion of West Eurasian genetic component 
than contemporary proxies. Somewhat surprisingly Malaysian Peninsular tribes rather than the 
geographically closer Austroasiatic languages speakers like Vietnamese and Cambodians show highest 
sharing of IBD segments with the Munda. In addition, we affirmed that the grouping of the Munda 
speakers into North and South Munda based on linguistics is in concordance with genome-wide data.

Genetically diverse1–3 South Asia is home to more than a billion people who belong to thousands of distinct 
socio-culturally or ethnically defined population groups. These groups speak languages of four major language 
families: Indo-European, Dravidian, Austroasiatic and Trans-Himalayan. Studies based on genome-wide geno-
type data have shown that the majority of present day populations of the Indian subcontinent derive their genetic 
ancestry to a large extent from two ancestral populations – ancestral northern and southern Indians – of which 
the former is genetically close to West Eurasian populations4–6. In addition to these two components, the Munda 
speakers of the Austroasiatic family share a minor proportion of their genetic ancestry with Southeast Asian 
populations7. Austroasiatic languages are spoken by more than 100 million people in Mainland Southeast Asia 
(MSEA) and >10 million Austroasiatic speakers8 of Munda languages live in East and Central parts of India 
where they are surrounded by Indo-European, Dravidian and Trans-Himalayan languages speakers.
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Considering the widespread sharing of words related to rice agriculture in all main branches of Austroasiatic, 
it has been proposed that this language family co-expanded with farming in MSEA and that the speakers of 
Munda languages spread to India as part of this farming expansion9,10. Alternatively, considering the deep splits 
of extant Munda and extinct Para-Munda languages and evidence for independent domestication of rice in India 
and in Southeast Asia, it has been proposed that Austroasiatic languages could have, instead, spread from India 
to Southeast Asia11. Given that about 25% of the genetic ancestry of Munda speakers has been shown to be shared 
with Southeast Asians, unlike in other Indian populations, and, reversely, because Burmese share some ancestry 
with Indian populations, it has been proposed that the expansion of rice farming may have involved bilateral 
movement of people7.

Studies analysing mtDNA and Y chromosome markers have revealed a sex-specific admixture pattern of 
admixture of Southeast and South Asian ancestry components for Munda speakers. While close to 100% of 
mtDNA lineages present in Mundas match those in other Indian populations, around 65% of their paternal 
genetic heritage is more closely related to Southeast Asian than South Asian variation7,12,13. Such a contrasting 
distribution of maternal and paternal lineages among the Munda speakers is a classic example of ‘father tongue 
hypothesis’14. However, the temporality of this expansion is contentious7,13,15,16. Based on Y-STR data the coales-
cent time of Indian O2a-M95 haplogroup was estimated to be >10 KYA7,13. Recently, the reconstructed phylogeny 
of 8.8 Mb region of Y chromosome data showed that Indian O2a-M95 lineages coalesce within a clade nested 
within East/Southeast Asian within the last ~5–7 KYA17. This date estimate sets the upper boundary for the main 
episode of gene flow of Y chromosomes from Southeast Asia to India.

Previous autosomal study was limited to a single Austroasiatic population from Southeast Asia7, therefore 
in the present study, we generated and assembled large body of contextual genome-wide genotype data from 
Southeast Asia as well as from South Asia (Supplementary Table S1). We set out to affirm the signal of the admix-
ture event in autosomal data and to address previously unresolved questions including: (i) autosomal date of the 
South and Southeast Asian admixture event in Munda; (ii) characteristics of the Indian ancestry component of 
the Mundas; (iii) who are the closest living descendants of the source populations of the ancient admixture; (iv) 
and if the grouping of the Munda speakers into North and South Mundas based on some linguistic models is 
supported by genetic data.

To address these questions, we analysed 102 individual samples from Munda speaking populations (including 
10 newly reported samples) in context of 978 other samples (including 46 newly reported samples) from 72 pop-
ulations mainly from India, Southeast Asia and East Asia. The Munda speakers are divided into North Mundas 
(NM) and South Mundas (SM) based on linguistic affinities. List of all the populations, sample sizes, and some 
additional information on the dataset can be found in Supplementary Table S1.

Results and Discussion
The Munda speakers as an admixed population.  We first analysed Munda genomes with 
ADMIXTURE and PCA in context of other South and Southeast Asian populations and found that Munda share 
about three quarters of their genetic ancestry (k3–k5 components in Fig. 1, Supplementary Fig. S3) with Indian 
Dravidian and Indo-European speakers. Interestingly, Indian populations with the k3–k5 components have also 
a pink component (k2) which is widespread in European, West Eurasian, Near Eastern and Pakistani populations 
but missing in the Munda speakers (see Supplementary Fig. S3). Roughly one quarter of the ancestral compo-
nents in the Mundas’ genome (k6 – k12) are shared with Southeast Asians. There are two populations with a 
similar genetic profile to the Mundas in Central India: Dravidian speaking Gond who are known to have received 
a substantial gene flow from the Munda speakers18 and a linguistic isolate Nihali.

Principal component analysis (PCA) roughly reflects geographical locations of studied populations (see 
Supplementary Fig. S4). Based on the first two components of PCA, the Mundas are genetically situated between 
South Asians and Southeast Asians and Oceanians. Furthermore, South and North Munda tribes are clearly 
different – South Mundas are genetically closer to Southeast Asians and Oceanians while North Mundas are 
closer to South Asians. In sum, the results of the ADMIXTURE and PCA are consistent with the model by which 
the genetic ancestry of Indian Munda speakers represents an admixture between Indian and Southeast Asian 
ancestries.

The scenario of independent evolution without admixture was rejected by 3-population formal test of admix-
ture6 for South Munda, Santhal (NM) and Ho (NM) speakers, as they yielded significantly negative f3 values 
(indicative of admixture) when tested together with populations from India and Southeast Asia (Supplementary 
Table S2). Birhor (NM) and Korwa (NM) speakers did not display significant admixture signal potentially 
because of the vast genetic drift they have gone through after the admixture event as they show the lowest average 
heterozygosity among the Munda speakers (Supplementary Table S3).

To understand further the position of Mundas in the genetic landscape of Indian populations, we plotted the 
second and third principal components from the global PCA analysis (see Supplementary Fig. S5). The Mundas 
were situated close to the Dravidian speaking southern Indian end of the gradient, near Pulliyar population from 
southwestern India, being stretched towards Southeast Asian populations, the closest ones being Bateq, Jehai, 
Kintaq and Mendriq from Malaysia.

The best contemporary proxies for admixture sources.  Three populations that yield the highest 
outgroup-f3 values as the most affine sources of Southeast Asian ancestry in Munda are Lao from Laos, Dai from 
China and Murut from Borneo. From South Asia, the populations that produce the highest outgroup-f3 scores are 
Dravidian speaking Paniya and Pulliyar from Kerala region of India. For North Mundas, among the top Indian 
populations is also Indo-European speaking Chamar, whereas for South Mundas, there are Jarawa and Onge from 
Andaman Islands (Supplementary Table S2). Consistently, the South Munda speakers show the highest affinity to 
the Andamanese populations based on fineSTRUCTURE19 analysis (see Supplementary Fig. S6).
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For a more detailed view of the temporary aspects of admixture, we assessed the sharing of DNA segments that 
are identical by decent between Munda speakers and other populations. Refined IBD analysis20 showed that from 
India, Mundas share the highest number of DNA segments identical by descent (IBD) with Dravidian speaking 
Chenchus (1.68; CI: 1.46–1.91) and Indo-European speaking Chamar (1.63; CI: 1.26–2.11) when disregarding 
Nihali and Gond tribes as Nihali, a language isolate, are possibly related to Munda and the Gond are reported 
to have received gene flow from the Munda18. From Southeast Asia the sharing is highest with Mah Meri (2.04; 
CI: 1.79–2.33) and Temuan (1.93; CI: 1.67–2.24) tribes from Peninsular Malaysia, followed by Jakun and Che 
Wong from the same area (Fig. 2, Supplementary Table S3). Surprisingly, the geographically closer Austroasiatic 
speakers from Southeast Asia, such as Cambodians and Vietnamese, do not share as many IBD segments with 
the Mundas. This effect could be caused by the fact that the mainland Southeast Asian populations have smaller 
proportions of the original Austroasiatic component in their genomes due to subsequent gene flow received from 
East Asia. Another explanation could be a more complex direction of gene flow in this area. Similar results were 
observed when using total lengths of shared IBD segments instead of their counts (Supplementary Fig. S7).

When dividing the segments shared with the Mundas into two groups, short (<1 cM) and long (>1 cM), we 
noticed that the two sources, South Asian and Southeast Asian populations, clearly form two distinct groups 
based on shared segment length patterns (Fig. 2). Both, mainland and island Southeast Asian populations share 
a high number of long IBD segments with the Mundas while Indian Dravidian and Indo-European speaking 
populations share plenty of short IBD segments. Surprisingly, no difference was found in Indian Dravidian and 
Indo-European speakers in context of sharing DNA with the Mundas (Welch’s t-test; short IBD P = 0.5218; long 
IBD P = 0.5302; all IBD P = 0.9305). The formation of the two groups seen on Fig. 2 could refer to different 
genetic distance between admixed populations and other populations from the corresponding areas; i.e., the 
Southeast Asian share of the Munda speakers’ genomes has diverged from present day Southeast Asians more 
recently than the South Asian part from present day South Asians. This result has to be taken with caution as we 
found correlation between the shared IBD segment lengths and the average heterozygosity in these populations 
(Supplementary Fig. S8, Table S3).

Admixture proportions suggest a novel scenario.  We used qpAdm21 to determine the relative propor-
tions of West, Southeast and South Asian ancestries in Munda speakers, using a number of modern and ancient 
West Asian populations, Lao, Burmese, Cambodia or Mah Meri (Austroasiatic speaking Malaysian group), and 
Onge or Paniya as proxies for the three Asian components (Supplementary Table S4). Regardless of which West 
Asian population we used, we found that Munda speakers can be described on average as a mixture of ~29% 
Southeast Asian, 15.5% West Asian and 55.5% South Asian components. When rescaling the West and South 
Asian components to 1 to explore the Munda genetic composition prior to the introduction of the Southeast 
Asian component, we note that the West Asian component is lower (~22%) in Munda compared to Paniya (27%) 
(Supplementary Table S4: Total_Average_SEA = 0). Consistently with qpGraph analyses in Narasimhan et al.22, 

Figure 1.  The distribution of genetic components (K = 13) based on the global ADMIXTURE analysis 
(Supplementary Figs S1, S2, S3) for a subset of populations on a map of South and Southeast Asia. The circular 
legend in the bottom left corner shows the ancestral components corresponding to the colours on pie charts. 
The sector sizes correspond to population median.
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this may point to an initial admixture of a Southeast Asian substrate with a South Asian substrate free of any West 
Asian component, followed by the encounter of the resulting admixed population with a Paniya-like population. 
Such a scenario would imply an inverse relationship between the Southeast and West Asian relative proportions 
in Munda or, in other words, the increase of Southeast Asian component should cause a greater reduction of the 
West Asian compared to the reduction in the South Asian component in Munda. However, we note that the scaled 
proportion of West and South Asian components in our North and South Munda are comparable (Supplementary 
Table S4: SM_SEA = 0 and NM_SEA = 0 show 23% and 21% West Asian and 77% and 79% South Asian contri-
butions) while the Southeast Asian component is 12% higher in South than in North Munda. The independence 
between the amount of Southeast and West Asian components in our North and South Munda populations con-
tradicts the expectations and therefore points to an opposite and simpler scenario: both South and North Munda 
could be modelled as an initial admixture between Southeast Asian populations and an autochthonous Indian 
group with a slightly lower West/South Asian composition compared to what observed in Paniya today. South 
Munda then kept isolated from additional gene flow, while North Munda received a longer admixture pulse from 
the local Indian groups, which caused the dilution of the newly arrived Southeast Asian components in North 
Munda, without affecting the relative proportions of West and South Asian components.

To further explore the demographic history of Indian Munda speaking populations we used Admixture Graph 
(AG) approach implemented in qpGraph21 that allows us to estimate goodness of fit between data and specified 
model that involves multiple admixture events and drift. Populations within North and South Munda language 
meta-groups differed from each other significantly in their affinity to these three ancestral sources when using f4 
statistic, yielding |Z| scores higher than 3 (Supplementary Table S5), and could not thus be pooled together. The 
general model with three distinct sources of admixture (Supplementary Fig. S9) offers a good fit with data in case 
of all 11 Munda speaking populations tested, however, with different proportions of individual ancestry compo-
nents (Supplementary Table S6). Compared to qpAdm we observed that qpGraph consistently yielded higher 
estimates of West Eurasian ancestry in Munda speakers.

Dating the admixture event.  We used ALDER to test this scenario and to infer the admixture time that 
led to the genesis of the Mundas23. The admixture midpoint was 3846 (3235–4457) years ago for South Mundas, 
which may point to the time of arrival of the Southeast Asian component in the area, and 2867 (1751–4525) years 
ago for North Mundas (Fig. 3). The longer (1000 years) admixture time between North Munda and local Indian 
populations is consistent with the ADMIXTURE, PCA and qpAdm results where we saw North Mundas having 
a bigger proportion of Indian ancestry (made up, proportionally, by ~21% West and 79% South Asian) and a 
smaller Southeast Asian fraction than South Mundas (Supplementary Fig. S3, Fig. S4, Table S4).

While the ALDER dates that we obtained are, to our knowledge, the first estimates of the time of admixture of 
the Munda speakers based on genome-wide data, estimates from previous studies, based on other types of data, 
have yielded much earlier dates for the spread of Austroasiatic populations in India. Diamond and Bellwood24 
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have estimated the age of the Munda speakers and cultivation of rice in India 5000 years old based on archae-
ological data. The Munda branch split from other Austroasiatic languages less than 7000 years ago based on 
Fuller’s archeolinguistic reconstruction11,25. Recent Y chromosome studies, based on large scale resequencing of 
the whole Y chromosome, have estimated the age of haplogroup O2a, in which the East Asia component of the 
Munda Y chromosomes is nested within, to much more recent dates than the earlier estimates based on short 
tandem repeat variation7. The entire Southeast Asian Y chromosome variation within the clade O2a2 has been 
estimated to be only 5 965 (CI 5 312–7 013) years old17, while the variation within Munda speakers has been esti-
mated to derive from a single male ancestor who lived 4 300 (+−200) years ago15. The latter date estimate is very 
similar to ours and implies a significant male-specific founder event as part of the admixture process.

In this study, we have replicated a result previously reported in Chaubey et al.7 that the Mundas lack one ances-
tral component (k2 on Fig. 1) that is characteristic to Indian Indo-European and Dravidian speaking populations. 
If this component came to India through one of the Indo-Aryan migrations26 then it would be fair to presume 
that the Munda admixture happened before this component reached India or at least before it spread all over the 
country. However, the admixture time computed here, falls in the exact same timeframe as the ANI-ASI mixture 
has been estimated to have happened in India5 through which the k2 component probably spread. Therefore, 
we propose that if the Munda admixture happened at the same time, it is possible for it to have happened in the 
eastern part of the country, east of Bangladesh, and later when populations from East Asia moved to the area, the 
Mundas migrated towards central India. Such a scenario, which may be further clarified by ancient DNA anal-
yses, seems to be further supported by the fact that Mundas harbour a smaller fraction of West Asian ancestry 
compared to contemporary Paniya (Supplementary Table S4) and cannot therefore be seen as a simple admixture 
product of Southern Indian populations with incoming Southeast Asian ancestries.

Sex-biased admixture in Munda speakers.  In Chaubey et al.7, it was shown that the Munda speakers have 
high frequencies (19–95%) of East Asian chromosome Y haplogroup O2a at the background of almost no detect-
able East Asian mitochondrial DNA signal pointing to a sex-biased nature of admixture between Austroasiatic 
speakers and their local Indian neighbouring populations. We used outgroup f3 analysis to contrast allele fre-
quency patterns on the X chromosome versus those on the autosomal chromosomes to clarify the maternal side of 
this sex-biased admixture event. Our analysis revealed that on X chromosome, a Dravidian speaking group, North 
Kannadi, is relatively more similar to Munda speakers than on autosomes, while on autosomes Lao, Vietnamese 
and Burmese from Southeast Asia and Sino-Tibetan speaking Kuki from India have relatively higher f3 values 
than on X chromosome (Supplementary Fig. S10). This relatively higher autosomal affinity to Southeast Asian 
populations, however, is detectable only when testing South Munda speakers. The fact that South Munda speakers 
show more evident signs of a sex-specific admixture on maternal side is in accordance with the Y chromosome 
results from Chaubey et al. (2011), where South Munda speakers have also higher (0.73) average frequency of 
haplogroup O2a than North Munda speakers (0.62)7. This finding is consistent with our proposed scenario where 
South Munda kept isolated after the admixture event, while North Munda received additional admixture from 
local Indian groups, which diluted Southeast Asian component and blurred the signs of the sex-specific nature of 
the admixture event as the latter admixture pulse in North Munda was not sex-specific anymore.

Linguistics is in concordance with genome-wide data.  Until now, we have presumed that the linguis-
tic classification of the Mundas (North and South) is a suitable grouping criteria for genetic analyses. Here we take 
a glance at the genetic relationship between different North and South Munda populations. PCA of only Munda 
populations displayed North and South Mundas as separate groups, except one Juang and one Kharia individual 
fell together with North Mundas on first two principal components (see Supplementary Fig. S11). ADMIXTURE 
analysis showed that North Mundas have less of the combined k8–k11 genetic component than South Mundas 
(Wilcoxon rank sum test; N1 = 75; N2 = 11; P < 0.0001). These components were maximised in East and 
Southeast Asian samples. Smaller amount of Lao ancestry in North Mundas was also shown by qpAdm analysis 
(Supplementary Table S4). On the fineSTRUCTURE tree19, North and South Mundas clustered separately, except 

Figure 3.  Admixture times as evaluated by ALDER. We let ALDER pair up populations from Southeast 
Asia and South Asia as several populations from either area were good proxies for the admixture event based 
on Refined IBD and f3 analyses. For accuracy, North Munda speaking Santhal, Ho, Korwa and Birhor were 
addressed separately as admixed populations; due to a small sample size South Munda speakers were treated as 
one population. Reference population pair was chosen based on LD decay curve amplitude. Standard errors are 
estimated by jackknifing on chromosomes. Generation length is 30 years47. For all the pairs, see Supplementary 
Table S7.
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Kharia samples (South Munda) which clustered with Asur and Ho samples from North Munda (Fig. 4). All these 
analyses showed that Kharia and Juang were the most similar population to North Mundas among South Munda 
populations. Refined IBD analysis infers that North Munda populations share more long and short IBD segments 
among each other than with South Munda populations (see Supplementary Fig. S12). Therefore, by and large, the 
linguistic classification justifies itself but Kharia and Juang do not fit in this simplification perfectly. Interestingly, 
although Diffloth’s classification of the Munda languages into North and South Munda27 is widely cited, in 2005, 
Diffloth changed the position of Kharia-Juang branch on the language tree from South Munda group to be a side 

Figure 4.  A branch from a FineSTRUCTURE tree where all the Munda samples used in this analysis are 
situated on. Samples are coloured as follows: North Munda speakers – blue, South Munda speakers – red, 
samples from other populations than Munda – black.
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branch of the group that was previously known as North Munda28. Hence, this is in accordance with our findings 
about Juang and Kharia genetic affinities.

Methods
Samples collection and genotyping.  The analyses were performed on a merged dataset of 56 new sam-
ples together with 1024 previously published samples from different studies4,7,29–37 (Supplementary Table S1) 
all using different but compatible Illumina genotyping arrays. The new samples were collected from Laos (Lao 
N = 24), Bangladesh (Santhal (NM) N = 10), and East India (Hmar N = 4, Kom N = 2, Kuki N = 6, Mizo N = 5, 
Naga N = 1, Nyishi N = 4). DNA was extracted from blood samples collected from healthy adult donors who 
signed an informed consent form. New samples were genotyped using Illumina OmniExpress Bead Chips for 
730k, 710k and 650k SNPs. Since all samples used in this study were genotyped by compatible Illumina geno-
typing arrays we do not expect notable batch biases. Indeed, we do not observe batch differences between sam-
ples from the same population (except in cases of large population groups where sampling locations differ like 
Burmese) but genotyped with different array (see for example Admixture results for Ho, Naga, Paniya and Santhal 
on Supplementary Fig. S3). The study was approved by Research Ethics Committee of the University of Tartu. All 
genotyped data will be made publicly available on the ebc.ee/free_data website and NCBI-GEO public repository 
(accession number XXXX).

Data curation.  All the samples were filtered with plink v1.938. Only SNPs on autosomal chromosomes with 
a minor allele frequency >1% and genotyping success >97% were used in the analyses. Only individuals with a 
genotyping success rate >97% were left in the sample set. 245848 variants and 1072 people passed the filters; 8 
Gond were removed due to low genotyping success rate. For analyses that are affected by linkage disequilibrium 
(PCA, ADMIXTURE), dataset was further pruned by excluding SNPs with pairwise genotypic correlation r2 > 0.4 
in a window of 200 SNPs sliding the window by 25 SNPs at a time39. This left us 155743 SNPs.

Population structure analyses.  To capture genetic variability, we performed PCA using software 
EIGENSOFT 6.1.440 on pruned data of the whole filtered dataset (1072 individuals). To get some idea of the 
Munda speakers’ genetic structure in context of other Asian populations, we ran ADMIXTURE 1.23 pro-
gram41 with random seed number generator on the LD pruned data set one hundred times at K = 2 to K = 18 
(Supplementary Fig. S1). Following an established procedure, we examined the log likelihood scores (LLs) of the 
individual runs and found that the highest K with stable (global maximum has been reached) LL values is K = 13. 
Based on cross-validation (CV) procedure, genetic structure of a sample set is best described choosing the value 
of K with the lowest CV error. In our dataset the lowest CV error was at K = 13 (Supplementary Fig. S2).

Tests aimed at providing demographic inferences.  To test the admixture, we ran three-population 
formal test of admixture6 using Popstats program by Skoglund et al.42. For f3 analysis, source 1 was South Asian 
or West Eurasian population and source 2 was Southeast Asian or East Asian population. Outcomes with |Z| > 3 
were considered significant. All the South Munda speaking tribes (Bonda, Gadaba, Juang, Kharia, Savara) were 
treated as one population due to small sample size. We ran outgroup f3 statistic as f3 = (SouthMunda/Ho(NM), 
X, Yoruba) to find the closest modern populations from our data set for South and North Munda.

To compare the sharing of SNPs on X chromosome to autosomes in Munda speakers and other relevant 
populations from South and Southeast Asia, outgroup f3 statistics of the form f3(Yoruba; North/South Munda, 
reference population) were computed separately for X chromosomes and autosomes of the same individuals using 
AdmixTools-1.121. Only individuals for which X chromosome information existed in the dataset, could be used; 
for individuals present in this analysis, see Supplementary Table 1.

To retrieve the admixture proportions, we ran the qpAdm software21 testing the following South and North 
Munda populations (Bonda, Gadaba, Juang, Kharia, Savara, Asur, Birhor, Ho, Korwa, Mawasi, Santhal) as 
a three ways mixture of all possible combinations of West (Anatolia_N, Armenia_MLBA, Germans, Iran_N, 
IranianLaz2016), East (Lao, Cambodian, Burmese, Mah Meri) and South (Onge, Paniya) Asian groups and using 
as outgroups the following groups: Natufian, WHG, Han, Kankanaey, Karitiana, MbutiLaz2016, Papuan, Ust_
Ishim, Yorubas43,44. To retrieve the percentage for West Asian component, we modelled the Mundas as a mixture 
of IranianLaz2016, Onge, and Southeast Asian population. For Southeast Asian component, we modelled the 
Mundas as a mixture of IranianLaz2016, Paniya and Mah Meri population which turned out to be a better fit in 
qpAdm analysis than Lao, Burmese, and Cambodian. We could not use Iranian and Onge separately with Mah 
Meri to retrieve Southeast Asian component because Onge itself shares some Southeast Asian ancestry45,46.

To estimate goodness of fit between data and specified model that involves multiple admixture events and 
drift, we used qpGraph software21 but first, to decide if we should make a graph for every 11 Munda population or 
group them in some way (e.g. North and South Munda), we ran f4 analysis as described in Lazaridis et al. (2016) 
supplementary information section 343 using AdmixTools-4.1 software21. There was no clear clustering pattern in 
the Munda populations and therefore we generated 11 separate qpGraphs.

We used ALDER23 to infer admixture dates for South Munda, Ho (NM), Santhal (NM), Birhor (NM) and 
Korwa (NM). We used all the populations spanning from India to Europe from our data set as source 1 and all the 
populations from East and Southeast Asia as source 2. The population pairs to represent admixture times were 
chosen based on decay status and LD decay curve amplitude. Standard errors were estimated by jackknifing on 
chromosomes. We used generation length of 30 years47.

Haplotype-based analyses.  To investigate the relationship between the Munda speakers and Andamanese, 
we used fineSTRUCTURE19. For this analysis, the data was previously phased with Beagle 3.3.248. A co-ancestry 
matrix was constructed using ChromoPainter v119 with the default settings. From the co-ancestry matrix, the 
mean chunk lengths shared between Eurasian populations and Andamanese were extracted.
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Beagle was also used in Refined IBD20 analysis, where we studied the sharing of DNA segments of 
identity-by-descent (IBD) between the Munda speakers and other populations in our data set. From the results, 
we extracted the count of segments shared between every two individuals and found population medians. We did 
the same with short (<1 cM) and long (>1 cM) segments, to find patterns. We also compared total length of IBD 
segments shared between individuals from two different populations on average.

All the methods were performed in accordance with relevant guidelines and regulations.
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